

2019 Mathematics

Higher Paper 2

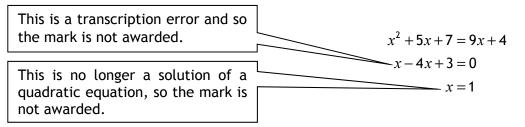
Finalised Marking Instructions

© Scottish Qualifications Authority 2019

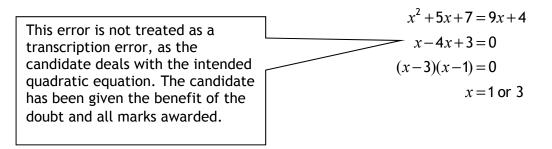
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Higher Mathematics


Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:


- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3}+2x^{2}+3x+2)(2x+1)$ written as $(x^{3}+2x^{2}+3x+2) \times 2x+1$ $= 2x^{4}+5x^{3}+8x^{2}+7x+2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.

- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Q	Question		Generic scheme	Illustrative scher	me	Max mark	
1.	(a)		•1 calculate the midpoint of AC	•1 (-4, -3)		3	
			• ² calculate the gradient of BD	$\bullet^2 -\frac{1}{3}$			
			• ³ determine equation of BD	• ³ $3y = -x - 13$			
Note	s:						
2. • 3. A 5 4. •	 •² is only available to candidates who use a midpoint to find a gradient. •³ is only available as a consequence of using the midpoint of AC and the point B. At •³ accept any arrangement of a candidate's equation where constant terms have been simplified. •³ is not available as a consequence of using a perpendicular gradient. Commonly Observed Responses:						
Cano	lidate	A - Pe	erpendicular Bisector of AC	Candidate B - Altitude through	ו B		
Midp	oint _{AC}	(-4,-	3) •¹ ✓	$m_{\rm AC} = 9$	● 1 ∧		
m _{AC} =	= 9 ⇒ i	$m_{\perp} = -$	$-\frac{1}{9}$ $\bullet^2 \times$	$m_{\perp} = -\frac{1}{9}$	•2 🗶		
-	x + 31 other p		•3 <mark>✓ 2</mark> ndicular bisectors award 0/3	9y + x = -61	• ³ ✓ 2		
Cano	Candidate C - Median through A			Candidate D - Median through	С		
Midp	$Midpoint_{BC}(4,-1) \qquad \bullet^{1} x$			$Midpoint_{AB}(3,-10)$	• ¹ 🗴		
m _{AM} =	$m_{\rm AM} = \frac{11}{9} \qquad \qquad \bullet^2 \checkmark 1$		• ² <u>1</u>	$m_{\rm CM} = -\frac{8}{3}$	•² 🗹 1		
9 <i>y</i> –	11x + 5	53 = 0	• ³ 🖌 2	3y + 8x + 6 = 0	• ³ 🖌 2		

Q	uestion	n	Generic scheme	Illustrative scheme	Max mark			
	(b)		• ⁴ calculate gradient of BC	• ⁴ -1	3			
			• ⁵ use property of perpendicular lines	• ⁵ 1				
			• ⁶ determine equation of AE	•6 $y = x - 7$				
Note	s:							
6. A si	t •6 acc implifie	cept a ed.	ilable to candidates who find and use a any arrangement of a candidate's equa					
Comi	monly (Obsei	rved Responses:					
	$=\frac{-3-1}{6+8}$		• ⁵					
	(C)		• ⁷ find x or y coordinate	•7 $x = 2$ or $y = -5$	2			
			 ⁸ find remaining coordinate of the point of intersection 	• ⁸ $y = -5$ or $x = 2$				
Note	s:	L						
7. F	or (2,-	-5) w	ith no working, award 0/2.					
Com	Commonly Observed Responses:							

Q	uestion	Generic scheme	Illustrative scheme	Max mark			
2.	•1 express $6\sqrt{x}$ in integrable form		•1 $6x^{\frac{1}{2}}$	4			
		• ² integrate first term	• ² $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$				
		• ³ integrate second term	• $3 \dots - \frac{4x^{-2}}{-2} \dots$				
		• ⁴ complete integration	•4 $4x^{\frac{3}{2}} + 2x^{-2} + 5x + c$				
Note	s:						
3. D 4. D	o not penal o not penal	Its must be simplified at \bullet^4 stage for \bullet^4 ise the appearance of an integral sign ise the omission of '+c' at \bullet^2 and \bullet^3 .					
Com	monly Obse	erved Responses:					
$\int \left(6 \right)$	lidate A $x^{\frac{1}{2}} - 4x^{-3} + \frac{3}{2}$						
Ζ	$=\frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{4x^{-2}}{-2} + 5x + c$ $=\frac{12}{3}x^{\frac{3}{2}} + 2x^{-2} + 5x + c$						
	$=\frac{12}{3}x^{\frac{3}{2}} + 2x^{-2} + 5x + c$ = $4\sqrt{x^{3}} + \frac{2}{\sqrt{x}} + 5x + c$ • ⁴ ×						
• ⁴ ca	nnot be aw	arded over two lines of working					

Question		on	Generic scheme	Illustrative scheme	Max mark
3.	(a)		• ¹ identify pathway	• ¹ $-\mathbf{p}+\mathbf{r}$	1
Note	s:				I
1. A	ccept	- P +	R for ● ¹ .		
Com	monly	v Obse	erved Responses:		
	1				1
	(b)		• ² state an appropriate pathway	• ² eg \overrightarrow{EB} + \overrightarrow{BF} stated or implied by • ³	2
			• ³ express pathway in terms of p , c and r	• $p-r+\frac{3}{4}q$ or equivalent	
Note	s:				
2. •	³ can	only b	e awarded for a vector expressed in	terms of all three of p , q and r .	
Com	monly	v Obse	rved Responses:		
Candidate A - incorrect expression in p, q and r and no pathway statedCandidate B - incorrect expression in p, q and r and no pathway stated $p-r$ Award 1/2 $\dots + \frac{3}{4}q$ or $\dots + q - \frac{1}{4}q$ Award 1/2					

(Question		Generio	c scheme		Illustrative schem	e	Max mark		
4.	(a)		• ¹ state values of	a and b		•1 $a = 0.973, b = 30$		1		
Not	es:		<u> </u>							
1.	1. Accept $u_{n+1} = 0.973u_n + 30$ for \bullet^1 .									
Con	nmonly	v Obse	erved Responses:							
	(b)	(i)	• ² communicate of to exist	condition for lim	it	 a limit exists as the recurrent relation is linear and -1<0.973<1 	urrence	1		
		(ii)	 ³ know how to find limit ⁴ process limit and state estimated 			• ³ $L = 0.973L + 30$ or $L = \frac{30}{1 - 0.973}$ • ⁴ 1100		2		
Not	05.		population							
	es. For ● ² a	accent	·•							
3. 4. 5.	-1 < 0.973 < 1 or 0.973 < 1 or 0 < 0.973 < 1 with no further comment; or statements such as "0.973 lies between -1 and 1"; or $-1 < a < 1$ (as <i>a</i> is previously defined). 3. • ² is not available for: $-1 \le 0.973 \le 1 \text{ or } 0.973 < 1;$ or statements such as "it is between -1 and 1" 4. Do not accept $L = \frac{b}{1-a}$ with no further working for • ³ . 5. For $L=1100$ with no working award • ³ and • ⁴ .									
			erved Responses:	.	-					
Candidate A - no rounding required $u_{n+1} = 0.97u_n + 30 \qquad \bullet^1 \times \qquad $					• ¹ x	• ³ <mark>~ 1</mark>				
Can	Candidate C - no valid limit									
u_{n+1}	$u_{n+1} = 2 \cdot 7u_n + 30 \qquad \bullet^1 \mathbf{x}$									
<i>L</i> =	A limit does not exist as $2 \cdot 7 > 1$ $L = \frac{30}{1 - 2 \cdot 7}$ L = 0 $\bullet^{3} \checkmark 1$ $\bullet^{4} \times$									

Question		Generic scheme	Illustrative scheme	Max mark			
		• ¹ identify shape and roots $•^1$ parabola with roots at -2 a		2			
	• ² interpret shape		• ² parabola with a minimum turning point at $x=1$				
s:							
1. \bullet^1 and \bullet^2 are only available for attempting to draw a 'parabola'.							
monly	Obse	rved Responses:					
	s:	s: ¹ and • ² are	• ¹ identify shape and roots • ² interpret shape	 •¹ identify shape and roots •¹ parabola with roots at -2 and 4 •² interpret shape •² parabola with a minimum turning point at x=1 •² o •⁴ x s: 1 and • ² are only available for attempting to draw a 'parabola'.			

Q	Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)		 •¹ use compound angle formula •² compare coefficients 	• $k \cos x^{\circ} \cos a^{\circ} - k \sin x^{\circ} \sin a^{\circ}$ stated explicitly • $k \cos a^{\circ} = 2, k \sin a^{\circ} = 3$	4
				stated explicitly	
			• ³ process for k	•³ √13	
Nata			• ⁴ process for <i>a</i> and express in required form	•4 $\sqrt{13}\cos(x+56\cdot3)^\circ$	

Notes:

1. Accept $k(\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ})$ for \bullet^{1} .

Treat $k \cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^2 stage both contain k.

- 2. Do not penalise the omission of degree signs.
- 3. $\sqrt{13}\cos x^{\circ}\cos a^{\circ} \sqrt{13}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{13}(\cos x^{\circ}\cos a^{\circ} \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. •² is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = 3$, however •⁴ may still be gained. See Candidate F.
- 5. Accept $k \cos a^{\circ} = 2, -k \sin a^{\circ} = -3$ for \bullet^2 .
- 6. •³ is only available for a single value of k, k > 0.
- 7. •⁴ is not available for a value of a given in radians.
- 8. Accept values of *a* which round to 56.
- 9. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 .

However, \bullet^4 is only available if the wave is interpreted in the form $k\cos(x+a)^\circ$.

10. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

Candidate A		Candidate B Candidate C
	●1 ∧	$k\cos x^{\circ}\cos a^{\circ} - k\sin x^{\circ}\sin a^{\circ} \qquad \cos x^{\circ}\cos a^{\circ} - \sin x^{\circ}\sin a^{\circ} \qquad \qquad$
$\sqrt{13}\cos a^\circ = 2$		$\cos a^\circ = 2$ $\cos a^\circ = 2$
$\sqrt{13}\sin a^\circ = 3$	• ² • ³ •	$\sin a^\circ = 3 \qquad \bullet^2 \bigstar \qquad \sin a^\circ = 3 \qquad \bullet^2 \checkmark 2$
		k=√13 •³ ✓
$\tan a^\circ = \frac{3}{2}$		$\tan a^\circ = \frac{3}{2}$ (Not consistent) $\tan a^\circ = \frac{3}{2}$
$a=56\cdot 3$		$a = 56 \cdot 3$ with equations at \bullet^2 . $a = 56 \cdot 3$
$\sqrt{13}\cos(x+56\cdot3)^\circ$	•4 🗸	$\sqrt{13}\cos(x+56\cdot3)^\circ$ $\bullet^3\checkmark$ \bullet^4 × $\sqrt{13}\cos(x+56\cdot3)^\circ$ \bullet^4 ×

Question	Gener	ric scheme	Illu	ustrative sche	me	Max mark
Candidate D - er $k \cos x^{\circ} \cos a^{\circ} - k$		Candidate E - errors $k \cos x^{\circ} \cos a^{\circ} - k \sin a^{\circ}$		Candidate F $k \cos x^{\circ} \cos a$		
$k \cos a^\circ = 3$ $k \sin a^\circ = 2$	• ² x	$k \cos a^\circ = 2$ $k \sin a^\circ = -3$	• ² ¥	$k \cos x^{\circ} = 2$ $k \sin x^{\circ} = 3$	• ² ;	c
$\tan a^\circ = \frac{2}{3}$ $a = 33 \cdot 7$		$\tan a^\circ = -\frac{3}{2}$ $a = 303 \cdot 7$		$\tan a^\circ = \frac{3}{2}$ $x = 56 \cdot 3$		
$\sqrt{13}\cos(x+33.7)^{\circ}$	^o • ³ ✓ • ⁴ ✓ 1	$\sqrt{13}\cos(x+303\cdot7)^\circ$	• ³ ✓ • ⁴ ✓ 1	$\sqrt{13}\cos(x+5)$	6.3)° •³ • •⁴	
$k \cos A \cos B - k \sin^{\circ} = 2$ $k \cos A^{\circ} = 2$ $k \sin A^{\circ} = 3$ $\tan A^{\circ} = \frac{3}{2}$ $a = 56 \cdot 3$ Unclease stage relat $\sqrt{13} \cos(x + 56 \cdot 3)$	•1 x •2 x ear at this e whether A es to a or to x .					
(b)	 •⁵ link to (a) •⁶ solve for x+ •⁷ solve for x 	а	 •⁵ √13 cos •⁶ •⁶ 33.69 •⁷ 337.38. 		= 3 • ⁷ 326 · 31 270	3
Notes:			1			
	ise working which	n rounds to 34, 326, 39	94 leading to	270 and 337.		

Q	uestior	Generic sch	neme	Illustrative scheme	Max mark
7.	7. (a) Method *			Method 1 •1 $-6(x^2 - 4x$ stated or implied by •2	3
		\bullet^2 complete the squa	re	• ² -6 $(x-2)^2$	
		• ³ process for <i>r</i> and w required form	rite in	• ³ -6 $(x-2)^2 - 1$	
		Method •1 expand completed		Method 2 •1 $px^2+2pqx+pq^2+r$	
		• ² equate coefficients	i	• ² $p = -6$, $2pq = 24$ $pq^2 + r =$	
		• ³ process for <i>q</i> and <i>r</i> required form	and write in	• ³ -6 $(x-2)^2 - 1$	
		available in cases where <i>p</i>	>0.		
		Observed Responses:			
	$\frac{1}{2}$		_	ndidate B	
```	$(x^2 - 4)$ -		-	$x^2 + 2pqx + pq^2 + r$	•1 🗸
-6((	$(x-2)^2$	-4)-25 • ¹		$=-6, 2pq=24, pq^2+r=-25$	•2 🗸
-6()	$(x-2)^2 -$	1 • ³	<i>q</i> :	= -2, r = -1	•3 ^
``	/	eption to general marking p	rinciple (h)	• ³ is lost as ans completed squ	
Cano	didate (		Ca	ndidate D	
<b>–6</b> (:	$x^{2} + 24x$	)-25 •1	ĸ		
`		)	<u>✓ 1</u> –6	$6((x+12)^2-144)-25$	●1 <b>^</b> ●2 <b>x</b>
-6(:	$(x+12)^2$	+839 • ³	<mark>√ 1</mark> –6	$6(x+12)^2+839$	• ³ <mark>√ 1</mark>
Cano	lidate E		Ca	ndidate F	
-6(	$(x-2)^2$ -	-1	-	$5x^2 + 24x - 25$	1
Chec	Check: $= -6(x^2 - 4x + 4) - 1$			$6x^2 - 24x + 25$ $6(x^2 - 4x$	•1 <b>x</b>
		$= -6x^{2} + 24x - 24 - 1$ $= -6x^{2} + 24x - 25$		$6(x-2)^2$	● ² <mark>✓ 1</mark>
			ard 3/3 =-	$-6(x-2)^2$	•3 🗴

(b)Method 1 • ⁴ differentiateMethod 1 • ⁴ -6x ² + 24x - 25• ⁵ link with (a) and identify sign of $(x-2)^2$ • ⁵ $f'(x) = -6(x-2)^2 - 1$ and $(x-2)^2 \ge 0 \forall x$ • ⁶ communicate reason• ⁶ eg $\therefore -6(x-2)^2 - 1 < 0 \forall x$ $\Rightarrow$ always strictly decreasingMethod 2 • ⁴ differentiateMethod 2 • ⁴ -6x ² + 24x - 25	3				
of $(x-2)^2$ $(x-2)^2 \ge 0 \ \forall x$ •6 communicate reason•6 eg $\therefore -6(x-2)^2 - 1 < 0 \ \forall x$ ⇒ always strictly decreasingMethod 2Method 2					
→ always strictly decreasing     Method 2					
• ⁴ differentiate • ⁴ $-6x^2 + 24x - 25$					
• ⁵ identify maximum value of $f'(x)$ • ⁵ 'maximum value is -1 ' or annotated sketch including x-axis					
• ⁶ communicate reason • ⁶ -1<0 or 'graph lies below x-axis' $\therefore f'(x) < 0 \forall x$					
$\Rightarrow$ always strictly decreasing					
Notes:					
3. In Method 1, do not penalise $(x-2)^2 > 0$ or the omission of $f'(x)$ at $\bullet^5$ .					
4. In Method 1, accept $-6(x-2)^2 \le 0$ or $-6(x-2)^2 < 0$ at $\bullet^5$ .					
5. At $\bullet^5$ communication must be explicitly in terms of the derivative of the given function. Do	) not				
accept statements such as '(something) ² $\ge 0$ ', 'something squared $\ge 0$ '.					
However, $\bullet^6$ is still available.					
Commonly Observed Responses:					
Candidate G					
$f'(x) = -6x^2 + 24x - 25$ •4 $\checkmark$					
$f'(x) = -6(x-2)^2 - 1$ • ⁵ ^					
$-6(x-2)^2-1<0$					
$\Rightarrow$ strictly decreasing • ⁶ ^					

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark	
8.	(a)		Method 1	Method 1	3	
			• 1 equate composite function to $x$	•1 $f(f^{-1}(x)) = x$		
			• ² write $f(f^{-1}(x))$ in terms of $f^{-1}(x)$	• ² $\sqrt[3]{f^{-1}(x)} + 8 = x$		
			• ³ state inverse function	• ³ $f^{-1}(x) = (x-8)^3$		
			Method 2	Method 2		
			•1 write as $y = f(x)$ and start to rearrange	• 1 $y = f(x) \Rightarrow x = f^{-1}(y)$ $y - 8 = \sqrt[3]{x}$		
			• ² express x in terms of y	$\bullet^2  x = (y - 8)^3$		
			• ³ state inverse function	• $f^{-1}(y) = (y-8)^3$ $\Rightarrow f^{-1}(x) = (x-8)^3$		
				$\rightarrow j$ (x) – (x $0$ )		
Note	s:					
1. Ir	1. In Method 2, accept ' $y - 8 = \sqrt[3]{x}$ ' without reference to $y = f(x) \Rightarrow x = f^{-1}(y)$ at $\bullet^1$ .					
2. Ir	2. In Method 2, accept $f^{-1}(x) = (x-8)^3$ without reference to $f^{-1}(y)$ at • ³ .					
3. A	3. At •3 stage, accept $f^{-1}$ written in terms of any dummy variable eg $f^{-1}(y) = (y-8)^3$ .					
4. y	4. $y = (x-8)^3$ does not gain $\bullet^3$ .					
5. <i>j</i>	$f^{-1}(x)$	=(x-	8) ³ with no working gains 3/3.			

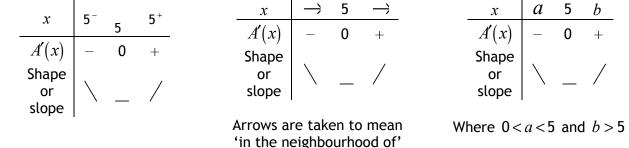
Question	Generic scheme		Illustrative schem	ne	Max mark
Commonly Obse	rved Responses:	Ī			
Candidate A - m	ultiple expressions for $y = f(x)$	Can	didate B - multiple express	ions for $y =$	=f(x)
$f(x) = \sqrt[3]{x} + 8$		f(x	$) = \sqrt[3]{x} + 8$		
$y = \sqrt[3]{x} + 8$			$\sqrt[3]{x} + 8$		
$y - 8 = \sqrt[3]{x}$		<i>x</i> =	$\sqrt[3]{y}+8$		
$x = (y - 8)^3$			$(x-8)^3$		
$y = (x - 8)^3$		-	$(x - b)^{3}$	As concerned	2 / 2
$f^{-1}(x) = (x-8)^3$	Award 2/3	J	$(x) = (x - \delta)$	Award	2/3
Candidate C - BE		Can	didate D		
$f'(x) = \dots$	• ³ ×	-	$(x) = x - 8^3$		
<i>y</i> ( <i>w</i> )		•	no working	Award	0/3
Candidate E					
$x \to \sqrt[3]{x} \to \sqrt[3]{x} + 8$	B = f(x)				
$\sqrt[3]{} \rightarrow +8$	- 、 /				
$\therefore -8 \rightarrow ()^3$	•1 🗸		warded for knowing to		
(x-8)	$(3)^3 \qquad \bullet^2 \checkmark$	ີ	perform inverse		
$f^{-1}(x) = (x - 8)$	,		operations in reverse		
$\int (x) - (x - \theta)$	5)				
(b)			-4 0 < < 40 D		1
	• ⁴ state domain		• ⁴ $9 \le x \le 18, x \in \mathbb{R}$		
Notes:					
1. Do not penali	se the omission of $x \in \mathbb{R}$ .				
Commonly Obse	rved Responses:				

Question		G	eneric scheme	Illustrative scheme	Max mark
9.	(a)	• ¹ identify i	nitial power	• ¹ 120	1
Note	es:				
Com					
Con	monty	Observed Respon	ses:		
	(b)	• ² interpret	information	• ² $102 = 120e^{-0.0079t}$ stated or implied by • ³	4
		• ³ process e	equation	• ³ $e^{-0.0079t} = 0.85$	
		• ⁴ write in l	ogarithmic form	•4 $\log_e 0.85 = -0.0079t$	
		• ⁵ process f	or <i>t</i>	• ⁵ 20·572	
Note	es:				
5. / 6. 7.	Accept 2 The calc For canc	idates who take a	follow from the val an iterative approach	id use of exponentials and logarithms at $\bullet^3$ h to arrive at $t = 20.6$ award 1/4. for $t = 20.55$ and $t = 20.65$ then award 4	
Com	monly	Observed Respon	ses:		
	didate A			Candidate B	
	$= 120e^{-0}$ $^{079t} = 0$ .		• ² ✓ • ³ ✓	$102 = 120e^{-0.0079t}$ • ² $\checkmark$	
		$= -0.0079t \log_{10} e$	•4 🗸	$e^{-0.0079t} = 0.85$	
20 ·	6		•5 🗸	$t = 20 \cdot 6$ •4 ^	● ⁵ <mark>✓ 1</mark>
Can	didate (	:		Candidate D	
log	, 0·85 =	-0.0079t	•4 🗸	$\log_e 0.85 = -0.0079t$	•4 🗸
	20·6 ye		•5 🗸	$t = 20$ years 6 months $\bullet^5 \times$	
$\iota = I$	20 years	sut	correct conversion osequent to answer is not penalised		
Can	didate E				
	$100e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e^{-0.0}e$		• ² ≭ • ³ √ 1		
-	-	15 <b>−0·0079</b> <i>t</i>	• ³ ¥ 1 • ⁴ ¥ 1		
	,0 15 <i>−</i> ·1	5 55770	● ⁵ ✓ 1		

Question		on	Generic scheme	Illustrative scheme	Max mark	
10.	(a)		<ul> <li>use -3 in synthetic division or in evaluation of quartic</li> </ul>	$\bullet^{1} -3 \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$	2	
			• ² complete division/evaluation	or $3 \times (-3)^{4} + 10 \times (-3)^{3} + (-3)^{2}$ $-8 \times (-3) - 6$ $\bullet^{2} \qquad \begin{vmatrix} 3 & 10 & 1 & -8 & -6 \\ -9 & -3 & 6 & 6 \\ \hline 3 & 1 & -2 & -2 & 0 \end{vmatrix}$		
			and interpret result	Remainder = $0 \therefore (x+3)$ is a factor or $f(-3) = 0 \therefore (x+3)$ is a factor		
a	ommu rrive l ccept	egitin any o	ion at $\bullet^2$ must be consistent with workinately at 0 before $\bullet^2$ can be awarded. If the following for $\bullet^2$ : (3)=0 so (x+3) is a factor'	ng at that stage ie a candidate's workir	ng mus	
3. D	<ul> <li>'since remainder = 0, it is a factor'</li> <li>the '0' from any method linked to the word 'factor' by 'so', 'hence', ∴, →, ⇒ etc.</li> <li>B. Do not accept any of the following for •²:</li> <li>double underlining the '0' or boxing the '0' without comment</li> <li>'x = -3 is a factor', ' is a root'</li> <li>the word 'factor' only, with no link.</li> </ul>					
Com	Commonly Observed Responses:					

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
	(b)	• ³ identify cubic and attempt to factorise	• ³ eg 3 1 -2 -2 	5		
		• ⁴ find second factor	• ⁴ eg $\begin{array}{cccccccccccccccccccccccccccccccccccc$			
			leading to $(x-1)$			
		• ⁵ identify quadratic	• $3x^2 + 4x + 2$			
		• ⁶ evaluate discriminant	•6 -8			
		• ⁷ interpret discriminant and factorise fully	• ⁷ since $-8 < 0$ , quadratic has no (real) factors leading to $(x+3)(x-1)(3x^2+4x+2)$			
Note	Notes:					
iı 5. E	<ol> <li>4. Candidates who arrive at (x+3)(x-1)(3x²+4x+2) by using algebraic long division or by inspection gain •³, •⁴ and •⁵.</li> <li>5. Evidence for •⁶ may appear in the quadratic formula.</li> <li>6. Accept '-8 &lt; 0 so no real roots' with the fully factorised quartic for •⁷:</li> </ol>					

- 7. Do not accept any of the following for  $\bullet^7$ :
  - $(x+3)(x-1)(3x^2+4x+2)$  does not factorise
  - $(x+3)(x-1)(\dots \dots)(\dots \dots)$  cannot factorise further.
- 8. Accept  $(x+3)(x-1)3x^2+4x+2$ , with a valid reason for  $\bullet^7$ .
- 9. Where the quadratic factor obtained at  $\bullet^5$  can be factorised,  $\bullet^6$  and  $\bullet^7$  are not available.


Commonly Observed Responses:				
Candidate A		Candidate B		
$(x+3)(x-1)(3x^2+4x+2)$	●5 ✓	$(x+3)(x-1)(3x^2+4x+2)$	•5 🗸	
$b^2 - 4ac = 16 - 24 < 0$	<b>●</b> 6 ▲	$b^2 - 4ac < 0$	●6 ▲	
so does not factorise	•7 🖌 1	so does not factorise	•7 ^	

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ express $A$ in terms of $x$ and $h$	•1 $(A=)16x^2+16xh$	3
			• ² express height in terms of $x$	$\bullet^2  h = \frac{2000}{8x^2}$	
			• ³ substitute for <i>h</i> and complete proof	• ³ $A = 16x^{2} + 16x \times \frac{2000}{8x^{2}}$ leading to $A = 16x^{2} + \frac{4000}{x}$	
Note	s:				
3. F	or can	didat	tion for <i>h</i> at • ³ must be clearly shown es who omit some of the surfaces of the <b>rved Responses:</b>		
	(b)		• ⁴ express <i>A</i> in differentiable form	• $16x^2 + 4000x^{-1}$	6
			• ⁵ differentiate	• $32x - 4000x^{-2}$	
			<ul> <li>equate expression for derivative to 0</li> </ul>	• $32x - 4000x^{-2} = 0$	
			• ⁷ process for $x$	•7 5	
			• ⁸ verify nature	<ul> <li>⁸ table of signs for a derivative (see below) ∴ minimum</li> </ul>	
				or $A''(x) = 96 > 0 \implies$ minimum	
			• ⁹ evaluate A	• 9 A = 1200 or min value = 1200	

#### Notes:

- 4. For a numerical approach award 0/6.
- 5. •⁶ can be awarded for  $32x = 4000x^{-2}$ .
- 6. For candidates who integrate any term at the ●⁵ stage, only ●⁶ is available on follow through for setting their 'derivative' to 0.
- 7. •⁷, •⁸ and •⁹ are only available for working with a derivative which contains an index  $\leq -2$ .
- 8.  $\sqrt[3]{\frac{4000}{32}}$  must be simplified at  $\bullet^7$  or  $\bullet^8$  for  $\bullet^7$  to be awarded.
- 9. •⁸ is not available to candidates who consider a value of  $x \le 0$  in the neighbourhood of 5.
- 10. •⁹ is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at  $\bullet^8$ .
- 11.  $\bullet^8$  and  $\bullet^9$  are not available to candidates who state that the minimum exists at a negative value of X. See Candidates C and D.

For the table of signs for a derivative, accept:



- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of A'(x) in the table is an acceptable alternative to writing '+' or '-' signs. Values must be checked for accuracy.

• The only acceptable variations of A'(x) are: A',  $\frac{dA}{dx}$  and  $32x - 4000x^{-2}$ .

```
Commonly Observed Responses:
```

commonly observed Responses.			
Candidate A - differentiating over	multiple lines	<b>Candidate B</b> - differentiat $A = 16x^2 + 4000x^{-1}$	ing over multiple lines ●⁴ ✔
$A'(x) = 32x + 4000x^{-1}$		$A'(x) = 32x + 4000x^{-1}$	
$A'(x) = 32x - 4000x^{-2}$	• ⁵ 🗶	$A'(x) = 32x - 4000x^{-2}$	● ⁵ ¥
$32x - 4000x^{-2} = 0$	● ⁶ <mark>✓ 1</mark>	$32x - 4000x^{-2} = 0$	• ⁶ <mark>√ 1</mark>
Candidate C - only considers 5		Candidate D - considers 5 separate ta	-
$A = 16x^2 + 4000x^{-1}$	•4 🗸	$A = 16x^2 + 4000x^{-1}$	•4 🗸
$A' = 32x - 4000x^{-2} = 0$	●5 🖌 ●6 🗸	$A' = 32x - 4000x^{-2} = 0$	●5 🗸 ●6 🗸
$x = \pm 5$	• ⁷ 🗴	$x = \pm 5$	•7 🗴
$x \rightarrow 5 \rightarrow$		$x \rightarrow 5 \rightarrow$	$x \rightarrow -5 \rightarrow$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 0 +	- 0 +
			$A' \mid / - \setminus$
∴ minimum	• ⁸ 🖌 1	$\therefore$ minimum when $x = 5$	•8 🖌 1
A = 1200 or min value = 1200	• ⁹ 🖌 1	A = 1200 or min value = 1	200
			Ignore incorrect working in second table

Q	uestion	Generic scheme	Illustrative scheme	Max mark
12.		Method 1 •1 state linear equation	Method 1 • $\log_4 y = 3x - 1$	5
		• ² introduce logs	• $\log_4 y = 3x \log_4 4 - \log_4 4$	
		• ³ use laws of logs	• $\log_4 y = \log_4 4^{3x} - \log_4 4$	
		• ⁴ use laws of logs	• $\log_4 y = \log_4 \left(\frac{4^{3x}}{4}\right)$ or $\log_4 y = \log_4 4^{-1} 4^{3x}$	
		• ⁵ state $a$ and $b$	•5 $a = \frac{1}{4}, b = 64$	
		Method 2 •1 state linear equation	Method 2 • $\log_4 y = 3x - 1$	5
		• ² convert to exponential form	• ² $y = 4^{3x-1}$	
		• ³ use laws of indices	• ² $y = 4^{3x-1}$ • ³ $y = 4^{-1}4^{3x}$	
		• ⁴ state $a$	•4 $a = \frac{1}{4}$	
		• ⁵ state $b$	• ⁵ $b = 64$	
		Method 3	Method 3 The equations at •1, •², •³ and • ⁴ must be stated explicitly.	5
		• ¹ introduce logs to $y = ab^x$	• $\log_4 y = \log_4 ab^x$	
		• ² use laws of logs	• ² $\log_4 y = \log_4 a + x \log_4 b$	
		• ³ interpret intercept	• ³ $-1 = \log_4 a$	
		• ⁴ interpret gradient	•4 $3 = \log_4 b$	
		• ⁵ state $a$ and $b$	• ⁵ $a = \frac{1}{4}, b = 64$	

Question	Generic scheme	Illustrative scheme	Max mark		
	Method 4 •1 interpret point on log graph	Method 4 •1 $x=3 \text{ and } \log_4 y=8$	5		
	<ul> <li>² convert from log to exponential form</li> </ul>	• $x=3$ and $y=4^8$			
	• ³ interpret point and convert	• $x = 0$ and $\log_4 y = -1$			
		$x = 0$ and $y = 4^{-1}$			
	• ⁴ substitute into $y = ab^x$ and evaluate $a$	•4 $4^{-1} = ab^0 \Rightarrow a = \frac{1}{4}$			
	<ul> <li>substitute other point into</li> <li>y=ab^x and evaluate b</li> </ul>	• ⁵ $4^8 = \frac{1}{4}b^3 \Longrightarrow b = 64$			
Notes:					
1. In any metho	od, marks may only be awarded within	a valid strategy using $y=ab^x$ .			
2. Accept $y = \frac{1}{4}$	$-64^x$ for $\bullet^5$ .				
3. Markers must identify the method which best matches the candidates approach; they must not mix and match between methods.					
<ol> <li>Penalise the omission of base 4 at most once in any method.</li> <li>Do not accept a = 4⁻¹.</li> </ol>					
Commonly Obse	erved Responses:				

C	uestion	Generic scheme	Illustrative scheme	Max mark		
13.		• ¹ interpret information given	•1 $f'(x) = 3x^2 - 16x + 11$ or $f(x) = \int (3x^2 - 16x + 11) dx$	5		
		• ² integrate any two terms	• ² eg $\frac{3x^3}{3} - \frac{16x^2}{2}$			
		• ³ complete integration	• $3 + 11x + c$			
		<ul> <li>⁴ interpret information given and substitute</li> </ul>	• $0 = 7^3 - 8 \times 7^2 + 11 \times 7 + c$			
		• ⁵ process for <i>c</i> and state expression for $f(x)$	• $f(x) = x^3 - 8x^2 + 11x - 28$			
Note	Notes:					
		es who make no attempt to integra	te to find $f(x)$ award 0/5.			
2. [	Do not penal	ise the omission of $f(x)$ or $dx$ or the second	he appearance of $+c$ at $\bullet^1$ .			
4. F 5. F 6. (	or candidat	• •	available.	ole. See		
7. /	Accept $y = x$	$x^{3} - 8x^{2} + 11x - 28$ at $\bullet^{5}$ since $y = f($	x) is defined in the question.			
8. 0	<ol> <li>Candidates must simplify coefficients in <u>their</u> final line of working for the last mark available in that line of working to be awarded.</li> </ol>					
Com	monly Obse	erved Responses:				
Can	didate A - in	complete substitution	Candidate B - partial integration			
f(x)	$x) = x^3 - 8x^2$	$+11x+c$ $\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$	$f(x) = x^3 - 8x^2 + 11 + c$ • ¹ $\checkmark$ • ² $\checkmark$ • ³	×		
f(x	$z) = 7^3 - 8 \times 7^2$		$0 = 7^{3} - 8 \times 7^{2} + 11 + c \qquad \bullet^{4} \checkmark 1$ c = 38			
$\begin{vmatrix} c = - \\ f(x) \end{vmatrix}$	$-28$ $x) = x^3 - 8x^2$		$f(x) = x^3 - 8x^2 + 49$ • ⁵ $\checkmark$ 1			

Q	Question		Generic scheme		Illustrative scheme				
14.			•1 expand	•1	uu+uv	4			
			• ² evaluate <b>u</b> . <b>u</b>	•2	16				
			• ³ determine equation in $\cos \theta$	•3	$20\cos\theta = 5$ or $\cos\theta = \frac{5}{20}$				
			• ⁴ evaluate angle	• ⁴	75.5° or 1.31 radians				
Notes:									
2. W a	<ol> <li>Do not accept u² for •¹, however •², •³ and •⁴ are still available.</li> <li>Where there is no evidence for •¹, then •², •³ and •⁴ are not available, however see Candidates C and D.</li> </ol>								
3. W	3. Where candidates use $ \mathbf{u}  \neq 4$ , then $\mathbf{\bullet}^3$ and $\mathbf{\bullet}^4$ are not available.								
4. W	4. Where there is no evidence of using $ \mathbf{u} ^2$ , $\mathbf{\bullet}^3$ is not available. See Candidate A.								
	5. Do not penalise omission of units in final answer.								
-	-		ppearance of $284 \cdot 5^{\circ}$ .						
7. A	ccept	answ	ers which round to $76^\circ$ or 1.3 radia	ns.					
Com	monly	Obse	erved Responses:						
Cand	Candidate A Candidate B								
u.(u	$+\mathbf{v}) =$	: <b>u.u</b> +	• <b>u</b> .v • ¹ ✓	16 + u	$v = 21$ $\bullet^1 \checkmark \bullet$	2 🗸			
``	$0\cos\theta$		● ² ×	$\mathbf{u}.\mathbf{v} = 5$	5				
			• ³ 🗸 2	$\cos\theta =$	$\frac{5}{20}$ • ³ $\checkmark$				
	$=\frac{17}{20}$			$\theta = 75$					
$\theta = 3$	1·7…°	>	• ⁴ <u>√</u> 1	0 - 73					
				Candidate D - missing working					
$\mathbf{u}.\mathbf{u} = 16$ $\bullet^2 \checkmark$					=5 •1 ^				
u.v = 21 - 16					$\frac{5}{20}$ • ² $\checkmark$ •	,3 🗸			
$\cos\theta$	$=\frac{5}{20}$		●1 ✓ ●3 ✓	$\theta = 75$	20 .5° ●⁴ ✓				
$\theta = 7$	20 75.5°		•4 🗸	<u> </u>	•••				
<u> </u>									

Question			Generic scheme	Illustrative scheme	Max mark			
15.	(a)		• ¹ find gradient of radius	• $1 - \frac{1}{3}$	3			
			• ² state gradient of tangent	•2 3				
			$\bullet^3$ state equation of tangent	• ³ $y = 3x - 2$				
Note	Notes:							

#### Notes

- 1. Do not accept  $y = \frac{3}{1}x 2$  for  $\bullet^3$ .
- 2.  $\bullet^3$  is only available as a consequence of trying to find and use a perpendicular gradient.
- 3. At  $\bullet^3$  accept, y 3x + 2 = 0 or any other rearrangement of the equation where the constant terms have been simplified.

### **Commonly Observed Responses:**

(b)	(i)	•4 find coordinates of T	•4 (0,-2)	1
	(ii)	• ⁵ find midpoint CT	• ⁵ (4,5)	3
		• ⁶ find radius of circle with diameter CT	• ⁶ $\sqrt{65}$ stated or implied by • ⁷	
		• ⁷ state equation of circle	• ⁷ $(x-4)^{2} + (y-5)^{2} = 65$	

#### Notes:

4. Answers in part (b)(i) must be consistent with answers from part (a).

5. Accept 
$$x = 0$$
,  $y = -2$  for •⁴.

6. 
$$(x-4)^2 + (y-5)^2 = (\sqrt{65})^2$$
 does not gain •⁷.

7.  $\bullet^7$  is not available to candidates who use a line other than CT as the diameter of the circle.

### **Commonly Observed Responses:**

### [END OF MARKING INSTRUCTIONS]